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Abstract

For numerical simulation of compressible viscous flow, the characteristics-based NSCBC boundary conditions pro-
posed by Poinsot and Lele [T. Poinsot, S.K. Lele, Boundary conditions for direct simulation of compressible viscous flows,
J. Comput. Phys. 101 (1992) 104–129] are frequently employed. This formulation is analyzed analytically and it is found
that the linear relaxation term proposed by Rudy and Strikwerda [D.H. Rudy, J.C. Strikwerda, A nonreflecting outflow
boundary condition for subsonic Navier–Stokes calculations, J. Comput. Phys. 36 (1) (1980) 55–70] to suppress slow
‘‘drift’’ of flow variables results in a non-zero reflection coefficient for acoustic waves. Indeed, although the NSCBC for-
mulation of boundary conditions is often called ‘‘non-reflecting’’, the magnitude of the reflection coefficient approaches
unity for low frequencies. A modification of the NSCBC boundary conditions and in particular the linear relaxation term
is proposed, which should appear fully non-reflecting to plane acoustic waves with normal incidence on the boundaries for
all frequencies. The new formulation is implemented and successfully validated in large eddy simulation of turbulent chan-
nel flow.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Acoustically non-reflecting boundary conditions for compressible (turbulent) flow simulation are a prere-
quisite for the successful application of computational fluid dynamics (CFD) to flow-acoustics problems, e.g.,
the numerical simulation of combustion instabilities. For linear problems, or for problems where linearization
near the boundary is permissible, a variety of techniques have been developed, see the recent review of Col-
onius [1]. On the other hand, situations with nonlinear effects near the boundary – the prime example being the
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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turbulent outflow problem – still pose significant problems. The Navier–Stokes characteristics boundary con-
dition (NSCBC) developed for multi-dimensional viscous flow by Thompson, and Poinsot and Lele with the
linear relaxation term proposed by Rudy and Strikwerda [2–4] has been applied successfully to many prob-
lems. However, there is evidence that this formulation, although frequently termed ‘‘non-reflecting’’, is indeed
partly reflecting [5,6].

In this paper, the NSCBC boundary conditions are analyzed, and an analytical expression for the reflection
coefficient of this formulation is derived. Then, a modification is proposed, which should allow the implemen-
tation of fully non-reflecting boundary conditions – at least for plane waves with normal incidence on the
boundary. The proposed formulation is computationally very efficient and the restriction to plane waves is
not a significant drawback for many applications in duct acoustics or combustion dynamics.

Both the original and the modified formulation for NSCBCs are tested in a large eddy simulation (LES) of
compressible turbulent channel flow at low Mach number with external excitation. The numerical results agree
with expectations except for very high frequencies (above the so-called cut-off frequency of the duct, i.e., the
frequency of the fundamental non-plane travelling or standing acoustic mode in the duct).

In Section 2, some notation is established before characteristics based boundary conditions are reviewed
briefly in Section 3. A more comprehensive discussion of the NSCBCs may be found in the original literature
[2–4,7] and in textbooks [8,9]. Recent developments of the approach with extensions to real gases or mixtures
thereof are discussed, for example in [10,11]. The new, non-reflecting formulation is introduced and discussed
in Section 4. Results of a validation study based on large eddy simulation (LES) of compressible channel flow
are shown in the last section.

2. Turbulent and acoustic fluctuations, characteristic wave amplitudes

When dealing with problems of compressible turbulent flow, it is often advantageous to distinguish concep-
tually between turbulent (‘‘ 0’’) and acoustic (‘‘�’’) fluctuations of the flow variables, e.g.,
Fig. 1.
and at
pð~x; tÞ ¼ �pð~xÞ þ ~pðx; tÞ þ p0ð~x; tÞ; ð1Þ
uð~x; tÞ ¼ �uð~xÞ þ ~uðx; tÞ þ u0ð~x; tÞ ð2Þ
for the pressure and the x-component of velocity, respectively. The overbar denotes mean values. In this pa-
per, we are concerned primarily with plane acoustic waves. Without essential loss of generality, it is assumed
that the waves propagate in the x-direction, as shown in Fig. 1. Therefore, the acoustic signal components
~p and ~u in the above equations depend only on the the x-component of the position~x.

2.1. Characteristic wave amplitudes

Given that perturbation amplitudes are sufficiently small, acoustic signal components are conveniently ex-
pressed in terms of the (linearized) characteristic wave amplitudes f ¼ f ðx� ð�uþ �cÞtÞ and g ¼ gðx� ð�u� �cÞtÞ,
traveling in the positive and negative x-direction, respectively (see again Fig. 1). Characteristic wave ampli-
tudes f, g and acoustic fluctuations of pressure p 0 and velocity u 0 are related to each other as follows:
~p
�q�c

¼ f þ g; ~u ¼ f � g ð3Þ
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Domain with characteristic waves f, g in the interior and at the boundaries. freflected, greflected: reflected waves at the upstream inlet
the downstream outlet boundary, respectively. fx, gx: external forcing at inlet and outlet, respectively (cf. Section 3.2.4).
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and conversely
f ¼ 1

2

~p
�q�c

þ ~u
� �

; g ¼ 1

2

~p
�q�c

� ~u.
� �

. ð4Þ
For harmonic waves with angular frequency x
f ðx; tÞ ¼ f̂ eiðxt�kxþxÞ; gðx; tÞ ¼ ĝeiðxt�kx�xÞ. ð5Þ

Here, kx� � �x=�cð1�MÞ are the wave numbers of the invariants, the ‘‘b ’’ indicates a complex-valued wave
amplitude, and M � �u=�c is the Mach number of the mean flow. The above relations can be obtained by lin-
earization of the acoustic equations about the mean flow.

2.2. Identification of acoustic signal components

To analyze the propagation and reflection of acoustic waves in compressible flow simulation, one must be
able to determine the acoustic signal components, i.e., the wave amplitudes f, g from flow variables
uð~x; tÞ and pð~x; tÞ. Referring to Eqs. (1) and (2), it is obvious that this is not a trivial problem, because in
DNS or LES of turbulent flow, turbulent contributions u 0 and p 0 to the velocity or pressure signals can be
significant and must be distinguished from the acoustic components ~p and ~u. In this paper, we are primarily
interested in propagation of plane waves in a duct at low frequencies (below the cut-off frequency of higher
order, non-plane modes, say) and therefore propose to exploit:

(1) scale separation;
(2) spatial symmetries;
(3) the inherent coupling between pressure and velocity fluctuations in traveling acoustic waves to differen-

tiate between turbulent and acoustic signal contributions.

For this purpose, an (instantaneous) area average Æ� � �æ over sampling planes perpendicular to the duct axis
is introduced. Plane acoustic waves travelling along the duct exhibit – with the exception of the acoustic
boundary layer, which is usually very thin – no spatial variation over such sampling planes, so
hf i � f and hgi � g.
On the other hand, if the spatial correlation length of turbulent eddies (the turbulent length scale) is sufficiently
small, then the area average over turbulent fluctuations will almost vanish,
hu0i � 0 and hp0i � 0.
It is therefore proposed to identify acoustic signal components as follows:
f ¼ 1

2

dp
�q�c

þ du
� �

for a plane wave propagating downstream; ð6Þ

g ¼ 1

2

dp
�q�c

� du
� �

for a plane wave propagating upstream ð7Þ
with deviations
du � hu� ui; dp � hp � pi ð8Þ

from the mean values. This form makes explicit that acoustic waves comprise fluctuations of both velocity and
pressure.

3. Boundary conditions in compressible viscous flow

Consider a (computational) domain as shown in Fig. 1, with acoustic signals f, g travelling back and forth.
At the domain boundaries, acoustic waves are partly reflected (outgoing and reflected components are indi-
cated in the figure). Furthermore, there may be external acoustic excitation signals fx or gx at the inflow
and outflow boundary, respectively.



440 W. Polifke et al. / Journal of Computational Physics 213 (2006) 437–449
Boundary conditions in compressible viscous flow simulation must fulfill several requirements:

(1) a target velocity uT at the inlet as well as a far-field pressure p1 at the outlet must be imposed. Note that
for direct or large eddy simulation of turbulent flows, the target velocity must comprise a fluctuating tur-
bulent signal component, i.e., uT ¼ �uþ u0;

(2) for some applications it is required that external excitation signals fx or gx of suitable amplitude and fre-
quency content be imposed [12,13] such that a significant acoustic signal can be detected;

(3) for many applications it is required that outgoing waves leave the domain without reflection [5,12,14].

As explained below, these requirements are to some extent conflicting. Therefore it is not surprising
that many different formulations for boundary conditions have been developed [1–4,8,9]. Most formula-
tions are ‘‘special purpose’’, i.e., they can only be applied to certain flow regimes or flow configurations,
or they fulfill one of the above requirements particularly well, while exhibiting deficits or disadvantages in
some other respect. Furthermore, boundary treatments can be computationally quite expensive, e.g., if
they require an enlarged computational domain (‘‘sponge region’’). This is not acceptable for some com-
putationally demanding applications. One may conclude that a completely general formulation has not yet
been developed.

The modified NSCBC formulation presented in this paper is suited to problems of duct acoustics and in
particular combustion instabilities [12,13,15,16], where often plane wave propagation below the so-called
‘‘cut-off frequency’’ (of higher-order, non-plane acoustic modes) is of particular importance.

To introduce notation and fundamental ideas, the original NSCBC formulation of Poinsot and Lele [3] is
reviewed very briefly in the next subsection. Then it is discussed how and to which extent the requirements (1)–
(3) are satisfied by this treatment. Detailed background information on the NSCBC formulation is available in
journal publications and monographs [2–4,6,8,9].

3.1. Wave amplitude variations and LODI relations

If the boundary lies in the (y, z)-plane, say, (see Fig. 1) the boundary conditions for plane waves travelling
in the x-direction are formulated with the help of two quantities L5 and L1
Li � ki
op
ox

� �q�c
ou
ox

� �
; ð9Þ
where the ‘‘+’’-sign corresponds to the index ‘‘5’’, and the propagation speeds are denoted as ki ” u ± c.
According to [3], the Li�s can be interpreted as the temporal rate of change of wave amplitudes at the bound-
ary and are therefore referred to as wave amplitude variations.

To obtain approximate values for the wave amplitude variationsLi in terms of the primitive flow variables,
so-called local one-dimensional inviscid (LODI) relations are introduced [3]. For pressure and the velocity com-
ponent normal to the boundary
op
ot

þ 1

2
L5 þL1ð Þ ¼ 0; ð10Þ

ou
ot

þ 1

2�q�c
L5 �L1ð Þ ¼ 0. ð11Þ
The values of flow variables at the boundaries at time step n + 1 can be computed with the help of these
relations from the flow variables and wave amplitude variations at time step n. For example, using an explicit
Euler time stepping scheme and p, u as flow variables
pðnþ1Þ ¼ pðnÞ � Dt
2

L
ðnÞ
5 þL

ðnÞ
1

� �
; ð12Þ
and similarly for the velocities [2]. Alternative choices for the flow variables and alternative time stepping
schemes – resulting in a different formulation of the right hand side of the above equation – have been pro-
posed [3], but these differences are not essential in the present context.
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For acoustic fluctuations, the corresponding wave amplitude variations L and the LODI relations can be
expressed in terms of the wave amplitudes f, g. Recalling the definitions (4) and (9) and subtracting Eqs. (10)
and (11) from each other, one obtains easily
o

ot
~p
�q�c

� ~u
� �

þ 1

�q�c
Li ¼ 0; ð13Þ
with i = 5 for the ‘‘+’’-sign and i = 1 for the ‘‘�’’-sign, respectively. In the present context, plane harmonic
waves are of particular interest. Using ‘‘ ^. . .’’ to denote the Fourier coefficient of a quantity, we find
L̂1 ¼ �i2x�q�cĝ; ð14Þ
L̂5 ¼ �i2x�q�cf̂ . ð15Þ
3.2. (Partially) reflecting boundary conditions

In this section various types of characteristics-based boundary conditions, as they can be implemented in
the NSCBC framework, are reviewed and their acoustic properties are briefly recapitulated. This discussion is
meant to clarify the properties and the limitations of the standard NSCBC formulation, and it should prepare
the ground for modified NSCBC formulation proposed in this paper.

3.2.1. Fully reflecting boundary – ‘‘open end’’ and ‘‘closed end’’

At a subsonic reflecting outlet, which corresponds to an ‘‘open end’’ boundary condition in acoustics,
~p ¼ f þ g ¼ 0. The acoustic reflection factor r, defined as the amplitude ratio of reflected and outgoing acous-
tic waves, equals
r � ĝ

f̂
¼ �1. ð16Þ
Of course, this definition of the reflection coefficient physically makes sense only if there is no incoming acous-
tic excitation signal gx. From the results of the last section, we infer for acoustic fluctuations thatL1 þL5 ¼ 0
at an ‘‘open end’’.

A fully reflecting ‘‘closed end’’ inflow boundary condition with ~u ¼ f � g ¼ 0 and r � f̂ =ĝ ¼ 1 may be de-
fined in an entirely analogous manner.

3.2.2. Partially reflecting boundary with linear relaxation term

If the temporal evolution of pressure or velocity at a (subsonic) boundary would be determined solely from
an outgoing wave Li via the appropriate LODI relation (10) or (11), then – neglecting viscous and multi-
dimensional effects – the outgoing wave would leave the domain without reflection. A boundary condition
constructed in this manner would exhibit a zero reflection coefficient, which would be very convenient for
many applications.

However, as explained above, target values of pressure p1 or velocity uT, respectively, must be imposed at
the boundary. To this purpose, Rudy and Strikwerda have introduced a ‘‘linear relaxation term’’, which gen-
erates a corrective signal whenever velocity or pressure deviate from the respective target value [4].

At an outlet, say, where the boundary condition has to maintain pressure, Poinsot and Lele formulate such
a corrective signal in terms of the wave amplitude variation L1
L1 ¼
r�c
L
ðp � p1Þ; ð17Þ
where r is a coupling parameter and the speed of sound c and length L are introduced for dimensional con-
sistency [3]. Then, if there is no outgoing acoustic wave L5, we see with (10) that an excess pressure
Dp = p � p1will be reduced exponentially to zero according to
oDp
ot

¼ � r�c
2L

Dp; ð18Þ
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with a decay time s inversely proportional to the coupling coefficient r
s � 2L
r�c

. ð19Þ
At an inlet, the velocity uT has to be imposed. If a relaxation term
L5 ¼
r�c
L
�q�cðu� uTÞ; ð20Þ
is introduced, one finds with the LODI relation (11) that again any deviation of the inflow velocity from the
target value uT should decay exponentially with a time constant 2L=r�c.

At least for problems without essential nonlinearities, LODI-based boundary conditions with relaxation
terms (17) or (20) have been found to work well in practice, provided that the coupling parameters r are large
enough. If the coupling is too weak, a slow ‘‘drift’’ of pressure or overall mass flow rate from the target value
and even divergence of the flow solver is observed.

3.2.3. Reflecting coefficient of boundaries with a linear relaxation term

A boundary condition constructed in this manner is unfortunately no longer fully non-reflecting to acoustic
waves, because outgoing acoustic waves f (at an outlet) and g (at an inlet) contribute to the primitive flow vari-
ables p and u, which appear in the relaxation terms (17) and (20). As a consequence, the outgoing waves are to
some extent reflected back into the computational domain.

Magnitude and phase of the reflection coefficient r of characteristics-based boundary conditions with relax-
ation term can be estimated if one assumes that a sufficiently large value for the coupling parameter r has been
chosen such that drift of pressure or velocity is effectively suppressed. Then deviations from the target pressure
at an outlet, say, will be dominated by acoustic signals
~p ¼ hp � p1i.

A reflected wave will be generated by the coupling term due to this deviation from the target value. Using rela-
tions (14) and (17) one estimates for the reflection coefficient
rðxÞ � ĝ

f̂
¼ hL̂1i

�i2x�q�cf̂
¼ r�chp̂i=L

�i2x�q�cf̂
. ð21Þ
We are assuming that pressure fluctuations around the target value are dominated by acoustic waves f, g, and
with the definition (4) we rewrite the r.h.s. of the above equation as follows:
irhp̂i
2Lx�qf̂

¼ ir�c
2Lx

f̂ þ ĝ

f̂
¼ i

xs
ð1þ rÞ. ð22Þ
Combining the last two equations and solving for r, a complex-valued reflection coefficient is obtained
rðxÞ ¼ �1

1þ ixs
¼

0 for xs ! 1 ðhigh-frequency limitÞ;
�1 for xs ! 0 ðlow-frequency limitÞ.

�
ð23Þ
For waves with relatively high frequency – with a period of oscillation much smaller than the decay constant s
– the restoration of the pressure at the outlet according to (17) is too slow to respond to the acoustic pertur-
bations, such that the boundary is indeed effectively non-reflecting. Note that the phase of the reflection coef-
ficient approaches p/2 in the high-frequency limit.

Conversely, a low frequency signal is reflected as if it had encountered an ‘‘open end’’ (~p ¼ 0), because the
boundary condition (17) succeeds in keeping the pressure at the outlet close to the target value p1 due to the
comparatively short decay time constant s.

This result should be valid provided that:

� harmonic waves dominate the deviations from the target pressure;
� the frequency x is non-zero;
� there is no external excitation signal gx.
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The reflection coefficient for a flow inlet with linear relaxation term according to (20) may be estimated in
an entirely analogous manner. One obtains
Fig. 2
condit
rðxÞ ¼ f̂
ĝ
¼ 1

1þ ixs
¼

0 for xs ! 1 ðhigh-frequency limitÞ;
1 for xs ! 0 ðlow-frequency limitÞ.

�
ð24Þ
i.e., in the low-frequency limit the boundary condition (20) acts like a ‘‘closed end’’ without fluctuations of
velocity.

The absolute value |r| of the reflection coefficient – which is the same for (23) and (24) – is plotted in Fig. 2
vs. xs, i.e., angular frequency non-dimensionalized with the time constant s of the coupling relation, see Eqs.
(18)–(20). Clearly, the boundary conditions (17) and (20) lead to significant reflection of outgoing waves for
low frequencies and or for large values of the coupling coefficient r (i.e., for small values of xs ¼ 2xLr�c).

If the magnitude of the reflection coefficient |r| is not to exceed a certain value for a given frequency x, then
the corresponding minimum time constant s and thereby the maximum coupling coefficient r can be deduced
from this plot. Unfortunately, if the coupling coefficient r is set below a certain value, divergence of the flow
solver or ‘‘drift’’ of velocity or pressure from the target values uT and p1, respectively, are observed. It follows
that boundaries with arbitrarily low reflection coefficient at low frequencies, let alone fully non-reflecting
boundaries, cannot be implemented with the formulation developed by Rudy and Strikwerda [4] and Poinsot
and Lele [3]. Note that Selle et al. [6] have obtained results equivalent to (23) and (24) by analyzing a differ-
ential equation for pressure perturbations resulting from Eqs. (17) and (20).

3.2.4. External acoustic excitation

With the help of (14) and (15), wave amplitudes ~L1 and ~L5 representing external acoustic excitations sig-
nals fx and gx can be specified as additional terms in the boundary conditions
Li ¼ � � � þ ~Li; ð25Þ

where ‘‘� � �’’ stands for the coupling terms discussed above (see Eqs. (17) or (20) ), or terms which correspond
to inflow turbulence. For example, if the incoming signal is a superposition of sine-waves (as used below), then
the corresponding wave amplitude variation equals
~L5 ¼ �2�q�c
X

Anxn cosðxnt þ /nÞ. ð26Þ
Alternatively, if a random number generator and a Butterworth filter are used to generate a ‘‘�white noise’’
time series fx(t) with uniform power spectral density over a certain range of frequencies, then according to
(14) the time derivative of this series provides the related wave amplitude variation ~L5
~L5 ¼ �2�q�c
ofxðtÞ
ot

. ð27Þ
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4. Non-reflecting boundary conditions with plane-wave ‘‘masking’’

It is possible to construct characteristics-based boundary conditions, which – at least for plane acoustic
waves with normal incidence – should be nearly non-reflecting even for low frequencies xs ! 0. The idea is
to identify outgoing plane waves at the boundary, and then explicitly eliminate outgoing wave contributions
from the linear relaxation term.

For example, at an outflow boundary the pressure coupling (17) would be modified as follows:
L1 ¼
r�c
L
ðp � �q�cf � p1Þ. ð28Þ
In this way the contribution of the outgoing wave f to the pressure p is removed from the linear relaxation
term. In other words, the ‘‘masked’’ outgoing wave f no longer contributes to the incoming wave L1 and
therefore should leave the domain without reflection at the boundary.

A modified velocity coupling term (20) at an inflow boundary is formulated in an analogous manner
L5 ¼
r�c
L
�q�cðuþ g � uTÞ. ð29Þ
4.1. Identification of outgoing waves at the boundary

To make the proposed scheme for non-reflecting boundary conditions work, outgoing wave amplitudes f, g
in (28) and (29) must be determined from the flow variables uð~x; tÞ and pð~x; tÞ at or near the boundary.

It is proposed to use the approach described in Section 2.2 for post-processing of computational data, i.e.,
to compute area averages Æ� � �æ over the boundary plane and identify the outgoing plane wave components via
the relations (6) and (7) as deviations
du � hu� ui; ð30Þ
dp � hp � pi ð31Þ
from the mean or target values of velocity and pressure, respectively.

4.2. Reflection coefficient with plane wave masking

Using again area averages Æ� � �æ, the reflection coefficient resulting from the boundary conditions (28) and
(29) with plane wave masking can be estimated. At an outflow boundary, say, the reflected wave g is deter-
mined with Eq. (14) from the wave amplitude variation L1
rðxÞ ¼ hĝi
hf̂ i

¼ hL̂1i
�2ix�q�chf̂ i

. ð32Þ
Inserting the expression for L1 as it results from the boundary condition (28), one finds
rðxÞ ¼
rc
L hp̂ � �q�cf̂ � p̂1i

�2ix�q�chf̂ i
¼ irc

2xLhf̂ i
hp̂ � p̂1i

�q�c
� hf̂ i

� �
. ð33Þ
Here, it has been made explicit that the outgoing characteristic wave amplitudes f is estimated from area-aver-
ages, although we expect – as discussed in Section 2.2 – that Æfæ � f (and similarly for g at an inflow).

It has been argued above that with sufficient scale separation between turbulent and acoustic fluctuations,
area-averaged deviations dp of pressure from the target value p1 should be caused only by plane acoustic
waves. In this case
hp � p1i
�q�c

¼ f
at the boundary and it follows from (33) that the reflection coefficient should indeed vanish by construction:
rðxÞ � 0
for plane harmonic waves of arbitrary non-zero frequency.
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Similar arguments suggest that an inflow boundary condition according to (29) would also be non-reflecting
even at very low frequencies. Again, this result rests on the assumption that area-averaged deviations du of
velocity from the target value uT are primarily due to outgoing acoustic waves, Æu � uTæ = � g.
4.3. Drift of average pressure or velocity with plane wave masking

Is it possible that the average values of flow variables at the boundaries drift away from the prescribed val-
ues p1 and uT, respectively, because the ‘‘masking’’ of plane waves in (28) and (29) hides the drift from the
linear relaxation term?

If the coupling coefficient r at on outlet, say, is too small to suppress pressure drift, one usually observes
that the deviation Dp of pressure from the physically correct value grows slowly throughout the computational
domain. In this situation, area averaging cannot suppress the spurious identification of the pressure drift as an
acoustic signal, because dp = ÆDpæ � Dp.

Fortunately, this pressure fluctuation due to drift is not accompanied by a corresponding velocity fluctua-
tion – as it would be in a true acoustic wave. Indeed constant overall mass flux and therefore du = 0 has been
observed whenever pressure drift occurred in one of the large eddy simulation runs performed in the course of
this study (not shown).

It follows that according to (6) a spurious outgoing characteristic wave amplitude f is identified:
f ¼ 1

2

dp
�q�c

þ du
� �

¼ Dp
2�q�c

. ð34Þ
Inspecting the modified boundary conditions (28), we find that
L1 ¼
r�c
L

ðp1 þ DpÞ � �q�cf � p1ð Þ ¼ r�c
2L

Dp; ð35Þ
i.e., the ingoing wave amplitude variation generated to correct the drift is only half as strong as it was previ-
ously (see Eq. (18)). Nevertheless, one may conclude that despite the spurious identification of an outgoing
wave amplitudes, the modified linear relaxation term restores the target pressure, although the time constant
s is now twice as large as for the standard formulation.

It may be shown in an analogous manner that a deviation of the velocity u from the target value at an inlet
would be reduced to zero by with a time constant twice as large as for the partially reflection inflow boundary
condition (20).
4.4. Acoustic excitation with plane wave masking

It is straightforward to construct non-reflecting boundaries with masking of outgoing plane waves and
acoustic excitation, because incoming wave amplitudes fx at the upstream inlet and gx at the downstream out-
let boundary, respectively, are known by construction.

At an outflow, say, the boundary condition (28) would be modified as follows:
L1 ¼
r�c
L
ðp � �q�cðf þ gxÞ � p1Þ þ ~L1. ð36Þ
The motivation for the explicit appearance of the excitation signal gx in the modified relaxation term is the
following: excitation is imposed by the incoming wave amplitude variation ~L1, cf. Eq. (25). Any additional
contributions to L1, which may be generated by gx contributing to the linear relaxation term, must be con-
sidered as spurious and should therefore be eliminated. This is simply achieved by explicitly subtracting the
contribution of gx to the pressure p at the boundary.

A modified non-reflecting inflow boundary with excitation is formulated in an analogous manner
L5 ¼
r�c
L
�q�c ðu� ðfx � gÞ � uTÞ þ ~L5. ð37Þ



446 W. Polifke et al. / Journal of Computational Physics 213 (2006) 437–449
5. Simulation results

Large eddy simulation of a channel flow configuration at a Reynolds number based on channel height, H,
and bulk velocity, Ub, of 25,000 and a Mach number based on bulk velocity of 3.3 · 10�2 has been performed
to validate the non-reflective character of the new boundary conditions. The length, L, of the computational
domain was twenty channel heights H, and the width, W, was three channel heights. No slip conditions were
applied at the top and bottom walls of the channel, and periodic boundary conditions were applied at the
spanwise boundaries. A grid of 128 · 64 · 32 points in the streamwise, wall normal, and spanwise directions,
respectively, was used for the simulations. The time step for the simulation was 10�3H/Ub. The turbulence
model used was the dynamic model of Moin et al. [17] for compressible turbulence. The numerical formulation
was the method of Wall et al. [18], which is an extension of the method of Pierce [19] to compressible flow. It is
efficient at low Mach number without introducing any artificial damping of acoustic waves.

The dissipation parameter that is described by Wall et al. [18] was set to zero. This method is second order
accurate in space and time. The discretization is also centered in both space and time, resulting in no artificial
dissipation of acoustic waves. Turbulent inflow date for u 0 as well as the wall normal and spanwise compo-
nents of velocity at the inlet plane were obtained from a separate, incompressible, channel flow calculation
using the method of Pierce and Moin [20].

Simulations with harmonic forcing at several frequencies xi at the upstream (inflow) boundary have been
carried out. The lowest (angular) frequency x1 � 2.5 (non-dimensionalized with flow speed and channel
height) with wave length k � 80 would correspond to a quarter-wave mode along the length of the channel.
The highest excitation frequencies shown are significantly above the cut-off frequencies xc � 60 for higher-
order, non-plane acoustic modes. At each time step, the code outputs the instantaneous values of both
pressure Æpæ and streamwise velocity Æuæ close to the boundaries of the computational domain. These values
are computed as area-averages over sampling planes oriented perpendicular to the mean flow direction at posi-
tions x/H = 0.1 and x/H = 19.9, respectively. The characteristic wave amplitudes f, g are computed from the
flow variables Æpæ and Æuæ using the relations (4), (6) and (7).

5.1. Results for the outflow boundary

For the simulations discussed in this subsection, forcing and masking according to (26) and (37) have been
employed at the inflow boundary. At the outflow, the standard formulation (17) and the new formulation (36)
with masking have been used, respectively. Results obtained with the two different outflow boundary conditions
are compared against each other in Figs. 3 and 4. The coupling coefficient r has been set to r�c=L ¼ 165 at both
boundaries. This is the minimum value required to avoid pressure drift for the present simulations.

The power spectral distributions (PSDs) for the two simulations without (left) and with (right) masking are
shown in Fig. 3. The amplitudes of the waves fd approaching the boundary are obviously of the same order of
magnitude, while the amplitude of reflected waves greflected is much smaller for the simulation with masking
(middle left vs. middle/right graphs). The bottom row of graphs shows an outflow ‘‘reflection coefficient’’
ĵrj ¼ jĝ=f̂ j for frequencies in the range x = 0.628, . . . , 340. This quantity is much smaller for the boundary
condition with masking at low frequencies, while at high frequencies both formulations yield jĝ=f̂ j � 0:5.

However, it does notmake sense to interpret ĝ=f̂ as an acoustic reflection coefficient at frequencieswhere there
is no acoustic forcing – because at those frequencies there is no acoustic wave to reflect. Therefore, in Fig. 4 reflec-
tion coefficients are plotted only at those frequencies where external forcing is imposed. A log-scale is used for the
abscissa, such that the results for the lower frequencies are better visible. In this representation it is very clear that
indeed the standard formulation (17) is fully reflecting at low frequencies. Also shown in Fig. 4 is the analytical
estimate (23) for the reflection coefficient. It obviously agrees rather well with the numerical result up to frequen-
cies exceeding the cut-off frequency of higher order modes; xc � 60 for the present channel geometry.

Plane wave masking, on the other hand, produces very small reflection factors |r|! 0 for low frequencies
(recall that for the computational setup chosen x = 2.5 corresponds to the ‘‘quarter-wave’’ mode of the duct).
For higher frequencies, the reflection factor obtained with plane wave masking increases significantly.

In our opinion, the difficulty to distinguish properly between turbulent and acoustic signal components
in the LES computation is to be held accountable for the discrepancies observed at higher frequencies. In



ω [−] ω [−]

Fig. 3. LES Results with upstream harmonic forcing at discrete frequencies xi. (Top) Power spectral density (PSD) of outgoing wave fd;
(Middle) PSD of reflected wave gd; (Bottom) reflection coefficient r(x)”|g/f|. (Left) Standard characteristics based BCs, see Eq. (17).
(Right) With plane wave masking, see Eq. (36).

Fig. 4. Reflection coefficient of outflow boundary as observed in LES without plane wave masking (d, see Eq. (17)), with plane wave
masking (h, see Eq. (36)) and according to the approximate theoretical analysis presented above (� � �, see Eq. (23)).
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this frequency range, the scale separation between acoustic and turbulent fluctuations weakens. Conse-
quently, the ‘‘measurement’’ of the characteristic wave amplitudes f, g as well as the reflection factor r

is severely disturbed by turbulent contributions u 0 and p 0 to the fluctuations of the flow variables. The
observation that the magnitude of the reflection factor approaches for high frequencies a value of roughly
0.5 no matter what boundary formulation is used (see also Fig. 5) supports this argument. Furthermore,
the modified NSCBC boundary treatment with ‘‘masking’’ relies on proper identification of outgoing
acoustic waves at the boundary. The simple identification procedure employed in this study – see Eq.
(6) – is also based on deviations du and dp from area averages and may no longer be adequate for higher



Fig. 5. Reflection coefficient of inflow boundary as observed in LES without plane wave masking (d, see Eq. (20)), with plane wave
masking (h, see Eq. (37)), and according to the analysis presented in Section 3.2.2 (� � �, see Eq. (24).
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frequencies, resulting in non-zero reflection coefficients. A recently proposed characteristics-based filter for
acoustic signal identification in LES should alleviate these problems [21].

Computational results of Selle et al. [6], using the linear restoring term without plane wave masking – the
‘‘partially reflecting boundary condition’’, see Eq. (17) – lend further support to this interpretation of the re-
sults at higher frequencies: Selle et al. studied laminar compressible flow, so there were no turbulent signal
contributions to the reflection coefficients measured. Indeed, perfect agreement could be observed for a wide
range of frequencies between the analytical estimate (23) for the reflection coefficient of the standard formu-
lation of NSCBC boundary conditions and the simulation results.

5.2. Results for the inflow boundary

Additional simulations have been performed to confirm that the novel formulation also works at an inflow
boundary. Harmonic forcing and masking has been imposed at the downstream outflow boundary. At the
inlet, both the standard formulation (20) and the new formulation (37) with masking have been used. The cou-
pling coefficient r has again been set to r�c=L ¼ 165 at both boundaries. The reflection coefficients for these
two simulations observed at the inflow boundary are compared against each other in Fig. 5.

6. Summary and outlook

The characteristics-based NSCBC formulation of boundary conditions for simulation of turbulent com-
pressible flows was originally proposed as a ‘‘non-reflecting’’ boundary condition [3]. However, in the present
work it was shown that the standard formulation with a linear relaxation term is in general partially reflecting
and indeed strongly reflecting for large coupling coefficients or low frequencies.

For plane acoustic waves with normal incidence on the boundary, it is possible to quantify analytically the
frequency dependence of the reflection coefficient r(x) of the standard NSCBC. Our analysis corroborates the
results of Selle et al. [6] and has been largely confirmed by large eddy simulation of turbulent channel flow.

A modification of the NSCBC boundary conditions with ‘‘wave masking’’ has been introduced, which by
construction should be fully non-reflecting at low frequencies. This formulation is computationally efficient
and does not require an artificially enlarged computational domain. The NSCBC with wave masking has been
implemented and validated with large eddy simulation of compressible turbulent channel flow at low Mach
number. At least for very low frequencies, near-zero reflection coefficients were observed without drift of over-
all mass flux or system pressure. Non-zero reflection coefficients at frequencies significantly above the cut-off
frequency for non-plane waves are attributed to imperfect identification of acoustic signal components in tur-
bulent flow simulation.

In its present form, the modified formulation with wave masking is applicable to plane acoustic waves with
normal incidence on the boundaries of the computational domain. This entails that the relevant acoustic fre-



W. Polifke et al. / Journal of Computational Physics 213 (2006) 437–449 449
quencies must not be too high, and indeed should be below the cut-off frequency of non-plane acoustic modes.
Furthermore, the computational domain should have straight inlet and outlet sections aligned with the direc-
tion of wave propagation. However, these restrictions do certainly not imply that the modified formulation
with wave masking is only applicable to channel flow. For example, the method has been applied with good
success to the simulation of thermo-acoustic combustion instabilities in a premix combustor test rig [22,23].
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